Search results for " leaf area index"

showing 10 items of 11 documents

Comparison of Crop Trait Retrieval Strategies Using UAV-Based VNIR Hyperspectral Imaging.

2021

Hyperspectral cameras onboard unmanned aerial vehicles (UAVs) have recently emerged for monitoring crop traits at the sub-field scale. Different physical, statistical, and hybrid methods for crop trait retrieval have been developed. However, spectra collected from UAVs can be confounded by various issues, including illumination variation throughout the crop growing season, the effect of which on the retrieval performance is not well understood at present. In this study, four retrieval methods are compared, in terms of retrieving the leaf area index (LAI), fractional vegetation cover (fCover), and canopy chlorophyll content (CCC) of potato plants over an agricultural field for six dates duri…

Canopystatistical method010504 meteorology & atmospheric sciencesScience0211 other engineering and technologiesGrowing season02 engineering and technologyLUT-based inversion; hybrid method; statistical method; leaf area index; fractional vegetation cover; canopy chlorophyll content01 natural sciencesLUT-based inversionhybrid methodLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingfractional vegetation coverleaf area indexQHyperspectral imagingcanopy chlorophyll contentStatistical modelRandom forestVNIRGeneral Earth and Planetary SciencesScale (map)Remote sensing
researchProduct

Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index

2017

This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Res…

010504 meteorology & atmospheric sciencesMean squared errorScienceleaf area index (LAI)0211 other engineering and technologies02 engineering and technology01 natural sciencesCropAtmospheric radiative transfer codesConsistency (statistics)KrigingSpatial consistencyArròs Malalties i plaguesSentinel-1ALeaf area indexmappingSentinel021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2. Zero hungerLeaf Area IndexSentinel-2AQCiències de la terrarice mapGeneral Earth and Planetary SciencesEnvironmental sciencerice map; leaf area index (LAI); Sentinel-1A; Sentinel-2A; Gaussian process regressionRice cropGaussian process regressionRemote Sensing
researchProduct

Power sensitivity analysis of multi-frequency, multi-polarized, multi-temporal SAR data for soil-vegetation system variables characterization

2017

Abstract: The knowledge of spatial and temporal variability of soil water content and others soil-vegetation variables (leaf area index, fractional cover) assumes high importance in crop management. Where and when the cloudiness limits the use of optical and thermal remote sensing techniques, synthetic aperture radar (SAR) imagery has proven to have several advantages (cloud penetration, day/night acquisitions and high spatial resolution). However, measured backscattering is controlled by several factors including SAR configuration (acquisition geometry, frequency and polarization), and target dielectric and geometric properties. Thus, uncertainties arise about the more suitable configurati…

Synthetic aperture radarSpatial correlation010504 meteorology & atmospheric sciencesCloud coverScience0211 other engineering and technologies02 engineering and technologyBackscatteringSoil water content01 natural scienceslaw.inventionsensitivity analysislawSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalibackscattering; soil water content; surface roughness; leaf area index; sensitivity analysisRadarLeaf area indexWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingSurface roughneQSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaSoil watersurface roughnessLeaf area indexSensitivity analysiBackscattering; Leaf area index; Sensitivity analysis; Soil water content; Surface roughness; Earth and Planetary Sciences (all)General Earth and Planetary SciencesEnvironmental scienceSpatial variabilityEarth and Planetary Sciences (all)Settore ICAR/06 - Topografia E Cartografia
researchProduct

Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data

2012

River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous…

010504 meteorology & atmospheric sciencesFloodplainWater flowpointable sensors; CHRIS/PROBA; leaf area index (LAI); inversion; radiative transfer (RT) model; FLIGHT; river floodplain ecosystem; vegetation density; hydraulic roughnessleaf area index (LAI)0211 other engineering and technologiesClimate change02 engineering and technologyCHRIS/PROBA01 natural sciencesforestinversionLaboratory of Geo-information Science and Remote SensingLaboratorium voor Geo-informatiekunde en Remote SensingLeaf area indexcoverlcsh:ScienceZenithriver floodplain ecosystem021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensinggeographychris-proba datahyperspectral brdf datageography.geographical_feature_categoryFLIGHTFlood mythrhine basinradiative-transfer modelHyperspectral imagingEnhanced vegetation index15. Life on landpointable sensorsPE&RCradiative transfer (RT) modelsugar-beetclimate-changeGeneral Earth and Planetary SciencesEnvironmental sciencehydraulic roughnesslcsh:Qflow resistanceleaf-area indexvegetation densityRemote Sensing
researchProduct

Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring

2016

Abstract This paper presents an operational chain for high-resolution leaf area index (LAI) retrieval from multiresolution satellite data specifically developed for Mediterranean rice areas. The proposed methodology is based on the inversion of the PROSAIL radiative transfer model through the state-of-the-art nonlinear Gaussian process regression (GPR) method. Landsat and SPOT5 data were used for multitemporal LAI retrievals at high-resolution. LAI estimates were validated using time series of in situ LAI measurements collected during the rice season in Spain and Italy. Ground LAI data were collected with smartphones using PocketLAI, a specific phone application for LAI estimation. Temporal…

2. Zero hunger010504 meteorology & atmospheric sciencesMean squared error0211 other engineering and technologiesSoil ScienceGeologyInversion (meteorology)02 engineering and technologyCrop monitoring; Rice; Leaf area index (LAI) retrieval; PROSAIL; Smartphone; Gaussian process regression (GPR); Landsat; SPOT5 Take501 natural sciencesAtmospheric radiative transfer codesKrigingSatellite dataGround-penetrating radarEnvironmental scienceComputers in Earth SciencesLeaf area indexRice crop021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine

2021

For the last decade, Gaussian process regression (GPR) proved to be a competitive machine learning regression algorithm for Earth observation applications, with attractive unique properties such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be a proficient time series processor to fill up gaps in optical imagery, typically due to cloud cover. This makes GPR perfectly suited for large-scale spatiotemporal processing of satellite imageries into cloud-free products of biophysical variables. With the advent of the Google Earth Engine (GEE) cloud platform, new opportunities emerged to process local-to-planetary scale satellite data using advanced machine …

Earth observationGoogle Earth Engine (GEE); Gaussian process regression (GPR); machine learning; Sentinel-2; gap filling; leaf area index (LAI)010504 meteorology & atmospheric sciencesComputer scienceScienceleaf area index (LAI)0211 other engineering and technologiesCloud computing02 engineering and technologycomputer.software_genre01 natural sciencesKrigingGaussian process regression (GPR)021101 geological & geomatics engineering0105 earth and related environmental sciencesPixelbusiness.industryQGoogle Earth Engine (GEE)machine learningKernel (image processing)Ground-penetrating radarGeneral Earth and Planetary SciencesData miningSentinel-2Scale (map)businesscomputergap fillingLevel of detailRemote Sensing; Volume 13; Issue 3; Pages: 403
researchProduct

Retrieving and Validating Leaf and Canopy Chlorophyll Content at Moderate Resolution: A Multiscale Analysis with the Sentinel-3 OLCI Sensor

2021

ESA’s Eighth Earth Explorer mission “FLuorescence EXplorer” (FLEX) will be dedicated to the global monitoring of the chlorophyll fluorescence emitted by vegetation. In order to properly interpret the measured fluorescence signal, essential vegetation variables need to be retrieved concomitantly. FLEX will fly in tandem formation with Sentinel-3 (S3), which conveys the Ocean and Land Color Instrument (OLCI) that is designed to characterize the atmosphere and the terrestrial vegetation at a spatial resolution of 300 m. In support of FLEX’s preparatory activities, this paper presents a first validation exercise of OLCI vegetation products against in situ data coming from the 2018 FLEXSense cam…

Canopy010504 meteorology & atmospheric sciencesScience0211 other engineering and technologiesleaf chlorophyll content02 engineering and technology01 natural sciencesLeaf area indexpixel heterogeneityChlorophyll fluorescenceImage resolution021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingleaf area indexPixelQcanopy chlorophyll contentVegetation15. Life on landSpatial ecologyGeneral Earth and Planetary SciencesEnvironmental scienceSentinel-3ddc:620Scale (map)moderate spatial resolutionleaf chlorophyll content; canopy chlorophyll content; leaf area index; pixel heterogeneity; moderate spatial resolution; Sentinel-3; OLCI; FLEX; HyPlantRemote Sensing
researchProduct

Retrieval of Crop Variables from Proximal Multispectral UAV Image Data Using PROSAIL in Maize Canopy

2022

Mapping crop variables at different growth stages is crucial to inform farmers and plant breeders about the crop status. For mapping purposes, inversion of canopy radiative transfer models (RTMs) is a viable alternative to parametric and non-parametric regression models, which often lack transferability in time and space. Due to the physical nature of RTMs, inversion outputs can be delivered in sound physical units that reflect the underlying processes in the canopy. In this study, we explored the capabilities of the coupled leaf–canopy RTM PROSAIL applied to high-spatial-resolution (0.015 m) multispectral unmanned aerial vehicle (UAV) data to retrieve the leaf chlorophyll content (LC…

General Earth and Planetary SciencesUAV; multispectral; radiative transfer model; inversion; PROSAIL; leaf area index; leaf chlorophyll content; canopy chlorophyll contentRemote Sensing
researchProduct

Crop Nitrogen Retrieval Methods for Simulated Sentinel-2 Data Using In-Field Spectrometer Data.

2021

Nitrogen (N) is one of the key nutrients supplied in agricultural production worldwide. Over-fertilization can have negative influences on the field and the regional level (e.g., agro-ecosystems). Remote sensing of the plant N of field crops presents a valuable tool for the monitoring of N flows in agro-ecosystems. Available data for validation of satellite-based remote sensing of N is scarce. Therefore, in this study, field spectrometer measurements were used to simulate data of the Sentinel-2 (S2) satellites developed for vegetation monitoring by the ESA. The prediction performance of normalized ratio indices (NRIs), random forest regression (RFR) and Gaussian processes regression (GPR) f…

leaf area indexARTMO toolboxSciencenitrogen; chlorophyll; leaf area index; agro-ecosystem monitoring; spectral indices; random forest; gaussian processes regression; ARTMO toolboxQspectral indiceschlorophyllgaussian processes regressionagro-ecosystem monitoringnitrogenrandom forestRemote sensing
researchProduct

Multi-Season Phenology Mapping of Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI

2022

Space-based cropland phenology monitoring substantially assists agricultural managing practices and plays an important role in crop yield predictions. Multitemporal satellite observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or by deriving biophysical variables. The Nile Delta represents about half of all agricultural lands of Egypt. In this region, intensifying farming systems are predominant and multi-cropping rotations schemes are increasing, requiring a high temporal and spatial resolution monitoring for capturing successive crop growth cycles. This study presents a workflow for cropland phenology characterization and mapping based on…

Landsat 8Land surface phenologyGreen leaf area indexgreen leaf area index; Sentinel-2; Landsat 8; land surface phenology; Gaussian Process Regression (GPR); time series analysisGaussian Process Regression (GPR)Time series analysisGeneral Earth and Planetary SciencesMatemática AplicadaSentinel-2Remote Sensing
researchProduct